
3D Consistent Implicit Generative Models
of Human Appearance

Master’s Thesis

Maxime Raafat
Department of Mathematics

Advisors: Dr. Sergey Prokudin
Supervisor: Prof. Dr. Siyu Tang

September 26, 2022





Abstract

We present a lightweight generative model for multi-view consistent full-body textured human avatars.
Combining an explicit and expressive point-based module with a novel yet simple 3D aware GAN-based
architecture, we develop a framework for capturing a diverse statistical distribution of clothed human appear-
ance. While high-quality 3D generative modelling has recently achieved outstanding results, the extension
on full-body humans has been subject to slow progress with only few attends at tackling the challenge. The
method we propose offers several advantages over current rival techniques. First, the expressiveness of our
point-based module guarantees robustness to novel body poses and camera views. Our generator is then
trained on a large dataset of single-view photographs only, and synthesizes by design 3D consistent appear-
ance textures in an implicit UV state without enforcing any view or identity preservation constraints. Finally,
our pipeline enables rendering at impressive speeds on consumer hardware, enabling fast visualization and
multiple real-time applications further down the line.
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Chapter 1

Introduction

Photorealistically rendering human avatars is an essential component of rapidly growing immersive tech-
nologies. Persuasive virtual and augmented reality, teleconferencing, virtual try-ons or animatable charac-
ters are just a small subset of all possible applications. Populating digital worlds will require novel and
deformable clothed people, going beyond the well-studied reconstruction problem [4, 99]. We aim at cap-
turing a diverse and representative distribution of high-quality human appearance via deep neural networks,
enabling multi-view consistent realistic avatars with easy controllability.

While constrained environments of capture studios enable a considerable degree of realism using pho-
togrammetry principles, the captured data comes at a high cost and is not scalable, therefore not suited
for our generative purpose. Instead, we find inspiration in the recent 3D generative modelling literature
and learn exclusively from single-view 2D photographs. Although traditional 2D and modern 3D synthesis
[46, 17] have reached an unmatched image quality, combining them with human modelling unlocks new
technical difficulties. Humans have many degrees of freedom in pose and identity, which a characteristic
distribution should be able to incorporate. Only few works before ours have attempted solving this challenge
[31, 13, 107], but none of them escaped the uncanny valley of realism. Their key idea lies in merging classi-
cal implicit human reconstruction methods with powerful 3D generators. On the other hand we take a more
robust approach by leveraging recent tools and discoveries in explicit point-based neural rendering [100, 54].

In a first step, we introduce a new appearance model which extends on a family of skinned multi-person
linear models [62, 78] with a point-based module. The point-based module represents appearance details
as a UV texture map containing RGB colors of a point and its displacement along the normal. Second, we
modify a powerful 2D lightweight GAN-based generator [57] to discriminate on rendered images rather than
on the generator output right away. Precisely, we generate UV textures which we wrap around a posed body
prior and then render via differentiable rendering. The rendered images then serve as fake labels, while our
true labels are drawn from a large dataset of full-body human images [25]. In short, our framework approx-
imates a distribution of UV appearance textures without ever explicitly seeing texture data. Combined, the
point-based module and the lightweight architecture are capable of achieving high-quality 3D multi-view
consistent results, but at a fraction of the time and computational cost of modern 3D generators.

Our contributions can be summarized as follows:

1. A fast, explicit and expressive point-based module for human appearance modelling;
2. A lightweight multi-view consistent GAN-based generator operating in an implicit UV state;
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CHAPTER 1. INTRODUCTION

3. A rigorous evaluation of our method in the context of novel human appearance synthesis.

The manuscript is organised as follows. Chapter 2 covers the most relevant progress in the field of hu-
man modelling and other related work. Chapter 3 provides the fundamentals for the understanding of our
method, reviewing parametric human body models, neural rendering and generative modelling. Our method
is rigorously described in Chapter 4, with a diverse set of failure and successful experiments conducted in
Chapter 5. The results of our experiments are more thoroughly discussed in Chapter 6, alongside a quick
discussion on the limitations and implications of our work.

2



Chapter 2

Related Work

2.1 Full-body human appearance modelling

Accurately representing full-body human avatars has been a long standing problem. Our method is in-
spired from deformable 3D models [14, 7, 44] and particularly leverages SMPL-X [78] from the SMPL
[62, 87] family. Several previous works build on top of SMPL to capture clothing deformations [65, 64],
but omit the modelling of color appearance indispensable for photorealistic rendering. Earlier optimization-
based methods [4, 3] focus on reconstructing detailed 3D textured body models of arbitrary people from
a single monocular video using photogrammetry principles. Although yielding controllable avatars with
detailed color appearance texture, these models are biased towards tight clothing and hair because of the
constrained underlying mesh representation. Other works in the same direction have investigated image-to-
image translation-based regression techniques [5, 2, 6, 55], considerably reducing the inference time. Those
methods however oftentimes produce poor results and do not scale well as they are trained on limited data.
Despite their advantages and potential ability to hallucinate occluded or unseen body regions, many of the
existing regression-based methods typically require high resolution paired inputs of 3D scans [85, 22, 97, 96]
for training.

In recent years, implicit representations have gained a lot of attention in human surface and appearance
modelling [88, 89, 108, 42, 37]. Implicit volumetric rendering approaches [68] in particular have seen
a rapidly growing interest because of their simplicity, expressiveness and the breakthroughs made by the
community [58, 70, 28, 106, 105, 98, 9, 10, 67, 21, 69]. Many multi-view setups for human appearance
rendering make use of neural radiance fields (NeRFs) as a backbone [61, 80, 75], and more advanced settings
additionally incorporate a canonical pose-independent space with deformable human models [53, 79, 104,
59, 99, 43, 27, 19]. While resulting in impressive image quality, these methods regularly suffer from slower
rendering speed and do not generalize well to extreme camera views or novel human poses when only
few images or camera angles are available. In contrast, we adopt a different approach by combining point
primitives [32] with recent techniques from differentiable rendering [100, 54, 1, 51, 20, 52]. Our method
therefore enables efficient rendering and is robust to novel views and pose deformations of the underlying
SMPL-X mesh.

3
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2.2 3D generative modelling

3D models for high-quality multi-view consistent image synthesis have recently emerged, building on top of
traditional 2D image generators. Generative adversarial networks (GANs) [30] especially have led the way
in terms of 2D photorealistic image generation [83, 45, 47, 48, 46, 15, 110], offering for instance desirable
qualities such as disentanglement of the so called StyleSpace [41, 47, 48, 46, 103]. Extending traditional 2D
CNN-based generators to 3D settings enables the synthesis of voxel-based data [101, 26, 111, 38, 71, 72],
but at high memory and computing costs with low output resolution. With the growth of implicit represen-
tations as described in Section 2.1, a few methods have tackled 3D generation based upon neural radiance
fields [90, 74, 18], but suffer from slow forward passes which limit the training quality and outputs. Other
works cleverly leverage NeRFs to yield impressive 3D aware image quality [33, 109] or even translate single
images to full NeRFs [16]. Chan et al. [17] introduce a simple hybrid tri-plane representation taking advan-
tage of both explicit and implicit methods, speeding up the training time and yielding state-of-the-art results.

Other approaches substitute NeRFs for signed distance fields (SDFs) [77], or replace GANs for recently
emerging Diffusion Models [11, 40, 73, 23, 86]. Our method shares ideas with the Texturify framework by
Siddiqui et al. [91], for instance by learning a distribution of texture maps. Unlike their work, we however
do not reparameterize the input geometry and operate on deformable point clouds rather than static meshes.

2.3 Generators for full-body human appearance

Although essential to many virtual applications, synthesizing high-quality realistic full-body avatars is an
unsolved challenge. Combining the knowledge from the two previous sections, we provide an overview on
the sparse set of works which tackle generative modelling for full-body human appearance.

Grigorev et al. [31] pioneered virtual human synthesis by proposing StylePeople, a neural dressing module
combined with a generative network inspired by StyleGAN [48]. The neural dressing module utilizes de-
formable SMPL-X meshes warped with a learned neural texture of deep features, and relies on a deferred
neural rendering pipeline [94]. Although yielding controllable and view consistent avatars, the learned ras-
terizer is subject to inaccuracies, and combining it with low-quality data is the main reason for the mediocre
generated results. We extend some of the ideas from StylePeople but enforce a more robust representation
with a proper point rasterizer.

More recent research exploit state-of-the-art 3D GANs combined with deformable models. Generative neu-
ral articulated radiance fields [13] and AvatarGen [107] both merge a canonical pose-independent space with
the tri-plane representation introduced in EG3D [17]. AvatarGen additionally substitutes radiance fields for
SDFs for more realistic results. None of those methods however is capable of high-quality photorealistic
generation. We believe this is not the correct approach, since already the projection step into and out of the
canonical space is prone to imperfections or flawed learning. Instead our pipeline generates textures right
onto the posed geometry and is thus by design consistent under novel poses and views.

Finally, Fu et al. [25] take a more data-centric approach and train a vanilla StyleGAN generator on a
large-scale human image dataset. Despite not 3D aware, the generated results are highly photorealistic
and significantly outperform the quality of all above-mentioned methods. Furthermore, the provided data
that the authors make publicly available is a significant contribution to the community. An earlier work
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on generative interpretable faces [29] is also worth mentioning, in which a 2D generator is conditioned on
controllable parameters to encourage disentenglement between 3D relevant attributes. Extending [25] with
conditioning on human model parameters is a conceivable suggestion to incorporate 3D knowledge into
the generation process. To conclude this chapter, we refer the reader to Table 2.1 which presents a unified
overview of the works we mentioned and consider the most important in their respective field.

Table 2.1: Unified overview of the presented related works. The photorealism column provides a qualitative
and subjective assessment of each work in comparison to the others. We kindly ask the reader to take our
assessment with a grain of salt.

METHOD GENERATIVE PHOTOREALISM 3D CONSISTENCY CONTROLLABLE

PHORHUM [6] No Middle Yes Yes

HumanNeRF [99] No Middle Yes Yes

EG3D [17] Yes High Yes No

StylePeople [31] Yes Low Yes Yes

AvatarGen [107] Yes Low Yes Yes

StyleGAN-Human [25] Yes High No No
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Chapter 3

Setting

This chapter covers the required material and concepts necessary for the understanding of this manuscript.
Specific models or architecture technicalities will not be discussed unless relevant to the topic, in which
case the particular technique will be thoroughly described in the according section. For further details on
state-of-the-art methods, please refer to the related work in Chapter 2.

3.1 Parametric human modelling

Modelling realistic full-body digital humans is a complex task involving several challenges. Diversity in
human shape, pose and appearance lead to near infinite possible combinations. Accurately representing
each aspect in a single human is likely prone to imperfections in topology and geometry, and can suffer
from inconsistencies between different subjects. Many models construct and incorporate a parametric body
prior to capture the statistical variation within a human population, and minimize the inconsistencies be-
tween reconstructions. Below we provide a brief summary of the popular and widely accepted SMPL [62]
parametric human model.

SMPL is a realistic 3D model of minimally clothed human bodies learned from thousands of 3D body scans,
based on linear blend skinning (LBS) and blend shapes. Despite its rather simple pipeline (hence the name),
it is capable of representing a large variety of surface level human topology by capturing a few parameters
per subject only. SMPL renders body vertices V ∈ R3N as a function of identity-dependent and pose-
dependent mesh deformations, driven by two corresponding compact sets of parameters, shape β ∈ R|β|

and pose θ ∈ R|θ|:

M(β,θ) : R|β|×|θ| → R3N , (3.1)

V = W (TP (β,θ), J(β),W,θ), (3.2)

TP (β,θ) = T̄ +BS(β,S) +BP (θ,P), (3.3)

where TP (β,θ) captures shape and pose deformation of the template mesh in the canonical pose T̄ via
linear transformations BS and BP of the shape, respectively pose, blend shapes S and P . The LBS func-
tion W takes as input the T-posed input template TP and a set of shape-dependent K body joint locations
J(β) ∈ R3K , and deforms the template mesh with the blend weights W along the kinematic tree according

7



CHAPTER 3. SETTING

to the pose θ and shape β.

To better understand the effect of the introduced deformations, let us consider a body model without LBS
and blend shapes. Posing our template mesh consists in transforming each vertex according to the pose pa-
rameter θ. In our current simplified scenario, vertices are fully independent of one another and the deformed
template will likely have sharp and unnatural articulations. LBS assigns vertices to a linear combination of
joints, solving the sharp skinning artefacts problem by blending neighboring vertices. Although a posed
mesh will now have smooth articulations, LBS cannot resolve unrealistic skin squeezing and stretching
around joint locations. Pose blend shapes tackle this issue by displacing each vertex accordingly in canon-
ical pose. Finally shape blend shapes, in analogy to pose blend shapes, displace vertices to model shape
identity variation rather pose variation. Figure 3.1 provides an overview of the SMPL pipeline; note that the
deformations are not applied in the same order as discussed here. For further details on the model, we refer
the reader to the original publication [62].

Figure 3.1: SMPL model pipeline (figure from the original publication [62]). From left (a) to right (d):
template mesh with LBS shown via color coding (a), skinned template mesh displaced with shape blend
shapes (b), shaped skinned template mesh displaced with pose blend shapes (c), final posed mesh with LBS
and blend shapes (d). Joint locations are represented with white dots.

While we purposefully mentioned making use of SMPL in our method, we technically employ the extended
model SMPL-X [78]. SMPL-X additionally introduces fully articulated hands and an expressive face via a
similar learning pipeline and model parametrization.

3.2 Neural rendering

Classical Rendering. Rendering is an essential part of modern computer vision and graphics. It con-
sists in producing an image, referred as the render, given the description of a 2D or 3D model. Classical
3D rendering methods can typically be divided into two major families of algorithms: rasterization and
physically-based path tracing. The former trades accuracy for speed, while the latter yields highly realistic
images but at a high computational cost. Rendering is at the center of many modern perception algorithms,
but understanding its exact mechanisms is beyond the scope of this manuscript. For a thorough investiga-
tion on the topic, we recommend the book by Pharr et al. [81]. This section discusses recent rendering
approaches in neural and differentiable rendering.

8



CHAPTER 3. SETTING

The rendering pipeline boils down to the following function r:

r : X × θ × C → I, (3.4)

which maps graphics primitives X (meshes, points, voxels or implicit representations), rendering parame-
ters θ (to not be confused with the pose parameter in SMPL) and camera parameters C to an image I .

Rendering parameters are conventionally editable in a rendering engine, but can also be incorporated into
learnable weights of a neural network - more to this in the next paragraph. Camera parameters project the
3D scene into the image domain by first considering the camera’s localization (position and rotation encoded
into the extrinsics), then mapping 3D world coordinates onto a 2D image plane according to the camera’s
internal parameters (optical center and focal length encoded into the intrinsics). Rendering is commonly
done with perspective projection in a physics-inspired pinhole camera model. Other projection methods
such as orthographic projection do not necessarily require camera intrinsics. In orthographic projection, the
depth of a 3D world point (distance along the z-axis of the point to the camera) does not affect its location
in the projected image.

Differentiable Rendering. Differentiable rendering back-propagates gradients from an image through the
rendering engine or neural network, all the way back to the rendering function inputs. This is of interest
when modelling, capturing or synthesizing novel renders from image data. Differentiable rendering aims at
minimizing the following objective by optimizing some or all of the parameters:

X∗, θ∗, C∗ = arg min
X,θ,C

N∑
i=1

L
(
r(X, θ, Ci), I

gt
i

)
, (3.5)

where L is an image-based loss function and Igti is the ith ground truth image corresponding to camera Ci,
among N available views per scene. The parameters can then simply be learned via traditional gradient-
based optimization methods. Neural rendering, oftentimes mistakenly used interchangeably with differ-
entiable rendering itself, assumes an additional neural shading module. In short, some component of the
rendering pipeline is operated by neural networks to produce the final image.

Rendering however, depending on the considered graphics primitive, is usually not fully differentiable. Tra-
ditional mesh rendering in particular involves rasterization, a discrete sampling operation which prevents
gradients to flow from pixels to mesh vertices. In the next paragraphs we explore the ideas behind differ-
entiable mesh- and point-based rendering. Although not suffering from differentiability issues, we quickly
examine volume-based methods for the sake of completeness, regardless.

Rendering Primitives. A mesh comprises a set of vertices (point locations) and faces, which stores the
connectivity between vertices (typically three vertices forming triangles). Optionally, texture information
can either be stored per vertex, or as an advanced texturing method such as UV texture maps. We previ-
ously mentioned the non differentiability of discrete mesh rasterization. Soft rasterization, abbreviated as
SoftRas [60] (see Figure 3.2 extracted from the paper), overcomes the discretization obstacle by smoothly,
or ”softly”, spreading out the coverage of each triangle face. Precisely, the influence of a triangle onto a
pixel is positively correlated with the signed distance from the face to the pixel in question:

9



CHAPTER 3. SETTING

D(fi, Iuv) = sigmoid
(
δ(fi, Iuv) ·

d2(fi, Iuv)

σ

)
, (3.6)

where D(fi, Iuv) represents the influence of face fi onto the pixel at location (u, v), the sign function
δ(fi, Iuv) is +1 if (u, v) ∈ fi, −1 otherwise, and σ corresponds to the face sharpness. The bigger σ, the
larger the area face fi covers. The influence of multiple faces on a pixel will finally be normalized after
having been aggregated with respect to the face’s depth.

Figure 3.2: Soft rasterizer R (top) fusing per-triangle contributions Dj in a ”soft” probabilistic manner,
against non-differentiable standard rasterizer R̄ (bottom), which cannot flow gradients from pixels to geom-
etry. Figure borrowed from the original publication [60].

Oftentimes referred to as point clouds, point primitives are a simplified version of meshes, in that they drop
the need for faces. They accordingly only consist of point locations and store features, such as color or po-
tentially neural features, in each point. Introduced by Wiles et al. [100] and later improved and accelerated
by Lassner et al. [54], differentiable point rendering follows the same mechanics as SoftRas; it assigns the
influence of a point on a pixel based on their distance to each other, and aggregates the influence of multiple
points into the final pixel value.

In contrast to mesh and point rendering, volume-based rendering with voxels (volume pixels) is differen-
tiable by construct. The method requires aggregating features from voxels hit by a ray marching algorithm,
based on the voxels’ visibility and density. None of those steps involve discrete operations, therefore yield-
ing well-behaving gradients. Despite their expressiveness and ability to render semi-transparent surfaces,
voxel primitives are memory hungry and scale with O(N3) in space complexity, with a volume side length
of N features. They additionally often fail in compactly representing geometry, since most voxel cells tend
to be empty. A recent and renowned solution [68] is to use implicit representations to approximate the ge-
ometry volume as a continuous function, commonly a simple MLP.
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Our method presented in future chapters combines point rendering with generative adversarial networks to
achieve novel 3D aware image synthesis. The next section concludes the current chapter by discussing the
basics of generative modelling, while particularly focusing on GANs.

3.3 Generative modelling

Generative Adversarial Networks. Generative modelling aims at synthesizing new samples drawn from an
underlying training distribution, given enough training data. For instance, an ideal generative model trained
on a large diverse set of cat images will be capable of creating an unseen novel cat image, not part of the
training data. Although the field of generative modelling has substantially grown over the last decade, we
exclusively review GANs in the context of image generation due to their convincing capabilities, and only
briefly mention alternatives.

Generative Adversarial Networks [30], or GANs for short, are a class of highly expressive likelihood-free
algorithms for data synthesis. Similar to many generative models, they rely on a specialised network to
transform random draws from a simple distribution - oftentimes normal - into realistic images. However,
unlike most other classes of models, GANs do not aim to maximize the likelihood of the observed data
with respect to the aforementioned specialised network. Instead they introduce a classifier whose task is to
distinguish real images from fake generated ones. In the context of GANs, the specialized transformation
network and the classifier are referred to as the generator G and the discriminator D. Formally, G maps any
input from a latent space Z to the image space X by ideally following the data distribution. On the other
side, D projects images to a real value between zero and one defined as the probability of being a genuine
image sample:

G : Z → X, D : X → [0, 1]. (3.7)

Adversarial Objective. Training GANs boils down to finding a Nash equilibrium in a two-player game. In
game theory, a Nash equilibrium represents a state in which the two players of a game do not benefit from
changing their own strategy, knowing the opponent’s strategy. In the current setting, this means converging
to a state where the generator does not improve anymore, and the discriminator is not capable of telling the
difference between true and fake labels. The original formulation [30] consecutively optimizes the generator
and discriminator for opposite objectives which can be summarised as arg min

G
max
D

V (G,D), with the

loss:

V (G,D) = Ex∼pd(x)

[
log D(x)

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
, (3.8)

where x and z are drawn from the true and generated distributions pd, respectively pz . Let us quickly inspect
V (G,D) by considering the possible outcomes for G and D. When training G, we hope to fool D into
believing that the synthesized images are real. We want D(G(z)) to be one, i.e., the second term approaches
negative infinity and minimizes the objective as expected. D on the other hand encourages correctly labeled
true and fake samples, such that D(x) = 1 and D(G(z)) = 0. This results in the function’s global maximum
with both terms being zero, and concludes our sanity check to confirm the adequacy of the loss function.
Given a fixed G, the objective’s equilibrium is achieved for the optimal discriminator D∗:

D∗
G(x) =

pd
pd + pz

. (3.9)
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Using D∗ and a few calculus fundamentals, the minimax game can be reformulated into:

V (G,D∗) = −2 ·
(
log 2 + ·JS

(
pd||pz

))
, (3.10)

where JS is the Jensen-Shannon (JS) divergence, a symmetric similarity measure for probabilistic distri-
butions. The theoretical global minimum is achieved in −log 4 when pd = pz , i.e., when D reaches 0.5
everywhere. In a nutshell, the generator’s performance will be evaluated by the discriminator and accord-
ingly adapt its generative ability depending on D’s decision until convergence. In this case, D cannot tell
true from fake images apart anymore.

GAN Training. While a theoretical unique solution is guaranteed, the lack of theory and learning algo-
rithms compared to explicit models makes GANs challenging to train. Training is fragile and suffers from
many instabilities; this section discusses some popular well-known engineering tricks and tuning techniques
which paved the way for photorealistic image synthesis. GANs are notoriously famous for two commonly
encountered issues: a discriminator learning too fast and mode collapse.

At the beginning of training, D is generally capable of learning very quickly, while providing only small
gradients to G. The discriminator consequently ends up perfectly labeling each sample, converging quickly
to zero, and the generator produces meaningless information. Mode collapse on the other hand is an un-
desired saddle point in the dual energy landscape; making downhill progress for one player may move the
other player uphill. The generator produces sub-optimal images, but updating it would hurt the discrimina-
tor. The result is an undesired convergence state from which both G and D cannot escape.

The above-described problems often occur in practice as a consequence of the GAN objective itself; many
variants have been suggested [66, 76, 8, 35, 50, 102, 12] to mitigate the encountered instabilities. Wasser-
stein GANs with gradient penalty (WGAN-GP) [35] is one notable variant, in which the JS divergence has
been replaced for the Wasserstein distance. Intuitively, the new metric measures the minimum effort re-
quired to transform one distribution into another one, and was introduced because of its many advantages
over the JS divergence. The JS divergence typically correlates badly with sample quality and saturates as
the discriminator gets better. This leads to vanishing gradients in the generator and potentially to mode
collapse. The Wasserstein distance, from this perspective, is more stable since it proportionally grows or
shrinks, when the distributions get further away, respectively closer to each other. The additional gradient
penalty enforces a constraint on the gradients magnitude and stabilizes the overall training.

Further tricks such as independent learning rates for both G and D via a two time-scale update rule (TTUR)
[39], one-sided label smoothing (occasionally randomizing the discriminators output) or instance noise [93]
(adding progressively decreasing amounts of noise to both real and generated images before feeding them
to the discriminator) can improve the GAN stability to a great extent. The nature of our method - described
in the next chapter - introduces additional penalization to the gradients propagated from the discriminator
to the generator. We therefore strongly rely on many of the above mentioned techniques to guarantee the
generator’s convergence. For an exhaustive and thorough analysis of GANs, we suggest the comprehensive
review by Gui et al. [34].

Generative Alternatives. GANs fall in the category of implicit density generative models. Implicit den-
sity models generate a function to produce data instances from a learned distribution. The model will then
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draw samples and adapt accordingly until it resembles the true data distribution. On the other hand, explicit
density models estimate the true probabilistic density function via a model whose parameters are optimized
from true data samples. The biggest well-established players in the field of implicit density models are Vari-
ational Autoencoders (VAEs) [49], formed by an encoder and decoder. The encoder maps the image space to
a latent space with reduced dimensionality, while the decoder then maps the latent back to the image space.
VAEs approximate the posterior distribution by minimizing the ELBO (evidence lower bound) since the
true posterior is not tractable. The ELBO comprises two terms: a reconstruction loss which maximizes the
sample likelihood, and a Kullback-Leibler (KL) divergence term, encouraging the latent Gaussianess. Even
though essential for consistency and interpolation between sampled points, the KL divergence introduces
blurriness in the generated images since any point now belongs to a multitude of clusters in the latent space.

Recently, a new class of models inspired by non-equilibrium statistical thermodynamics [92] have gained a
lot of attention. Diffusion Models [40, 73] have since then claimed producing better results than GANs [23].
The idea behind Diffusion Models is to slowly and iteratively destroy the structure of the data via noise ad-
dition in a forward diffusion process, and to restore structure in the data by learning the added noise through
a reverse diffusion process. In the forward process, one can add noise drawn from a normal distribution in a
single step by leveraging the properties behind normally distributed random variables. The reverse step then
simply predicts the noise between two time steps from the forward process with a U-Net like neural network.
Despite being effective, the reverse diffusion process requires small steps in each iteration, as estimating a
slight perturbation in the image signal is more tractable than predicting the full distribution in one single
step. In fact, Diffusion Models aim to maximize the likelihood of the posterior distribution similar to VAEs,
but in a tractable way via clever reformulation of the variational lower bound (unlike the ELBO). Tractable
likelihood-based models have desirable properties as they do not exhibit instabilities during training or mode
collapse, which is why Diffusion Models have received a continuously growing interest since their discovery.

Albeit providing insights into the major components of our model, we are aware that this chapter might
not cover all implemented aspects and tools. Further documentation on the machinery behind convolutional
neural networks, the mathematics behind the rendering equation, conditional GANs or many more genera-
tive alternatives could have been explored to a greater extent. We decided to only provide intuition for the
main building blocks of our pipeline.
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Chapter 4

Methods

We present a lightweight generative model for 3D multi-view consistent full-body avatars. To this end, we
first devise an expressive, flexible and powerful point-based appearance representation. In a second part,
we then introduce a novel yet simple generative module, directly extending on traditional 2D GAN-based
architectures.

4.1 Point-based appearance representation

Our point-based module builds on the SMPL-X [78] extension from the SMPL [62] family, thoroughly de-
scribed in Chapter 3.1. We leverage the UV mapping from the minimally clothed mesh to define the detailed
appearance of a subject. The UV field A = [Argb, Aδ] ∈ Rwa×ha×4 consists of RGB colors and geometry
information for every point on the surface. The geometry information is captured as a displacement of a
point along the SMPL-X mesh surface normal. Here, (wa, ha) are the width and height of the appearance
map. With this, we form a resulting point cloud X = {x = (xxyz, xrgb) ∈ R6} by sampling points xmxyz
from the surface of the mesh defined as in Equation 3.1, and obtaining their final 3D locations and colors
using the UV map A:

xxyz = xmxyz + δ · nxyz, (4.1)

δ = Aδ[u, v], (4.2)

xrgb = Argb[u, v], (4.3)

with UV coordinates of the surface point (u, v), and nxyz is the normal direction of the surface mesh at
location xmxyz . For reference, we will denote the full step of obtaining a human point cloud given the mesh
vertices V and appearance map A as h(V,A):

h(V,A) : R3N × Rwa×ha×4 → R6L, (4.4)

where L is the number of sampled points.

Similar representations of geometry and appearance have been explored in prior works [3, 4, 2, 5, 6]. How-
ever, one key difference is that we treat the output of this stage as a point cloud rather than a watertight mesh,
which potentially can also represent double-layered surfaces and other complex topology like glasses. Note
that our point-based module is not restrained to minimally clothed meshes. Our model can indeed generalize
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to any geometry with UV coordinates, although in practice a close proxie will achieve better robustness to
pose and shape deformations, and insure layout consistencies between different learned appearances.

4.2 Lightweight 3D aware implicit GAN

The above introduced point-based module enables optimization of both point colors and point locations
stored into 2D UV texture maps on top of a given underlying mesh. We should therefore in theory be per-
fectly capable of learning surface geometry and appearance of human bodies using traditional 2D generators.
We introduce 3DiGAN, a 3D aware implicit Generative Adversarial Network for high-quality multi-view
consistent appearance generation. Our GAN-based approach synthesizes images in an implicit UV state by
extending an implementation of [57] by GitHub user lucidrains [63]. In particular, we augment the fast and
lightweight convolutional GAN pipeline to rasterize the output of the generator G. Instead of feeding the
discriminator D with the generated images right away, the images are first rendered with a point rasterizer
on top of a SMPL-X mesh according to Equation 4.4, and only the renders are provided to D. The gener-
ator learns from gradients back-propagated all the way from D, through our point representation, up to the
generated textures via the point-based neural renderer. The full pipeline is depicted in Figure 4.1.

N e u r a l  
R e n d e r e r DL a t e n t

z

R e a l  
o r  

F a k e
G

Figure 4.1: Forward pass of the 3DiGAN pipeline. A random sample z drawn from a latent normal dis-
tribution is passed through the generator G. The output G(z) is then rendered on a SMPL-X mesh in the
neural renderer r. The render r(G(z)) finally serves as fake labels during training, and is provided to the
discriminator D alongside true samples from a dataset of full-body humans. If trained perfectly, G(z) is a
SMPL-X UV appearance texture map and r(G(z)) a realistic point cloud render of a deformed SMPL-X
body with detailed color and geometry.

G is then trained on a dataset of full-body humans to generate SMPL-X UV appearance maps A in a simple
yet clever architecture, as introduced by Liu et al. [57]. The generator (see Figure 4.2) enables gradients
to robustly and quickly propagate through the network via Skip-Layer Excitation (SLE) modules. SLE
modules present a low-cost redesigned skip-layer connection [36] to strengthen the gradients’ flow between
different feature layers. It convolves the spatially smaller feature map to match the number of channels of
the larger feature vector and then perform a simple element-wise multiplication on each feature channel.
Instead of optimizing the networks with the original loss function [30], the generator and discriminator are
trained with a hinge adversarial loss [56, 95]:
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LD = −Ex∼pd(x)

[
min(0,−1 +D(x))

]
+ Ez∼pz(z)

[
min(0,−1−D(G(z)))

]
,

LG = −Ez∼pz(z)

[
D(G(z))

]
,

(4.5)

where LD is the discriminator loss and LG equivalently the generator loss, and convergence state LD = 2
and LG = 0. Further information on the self-supervised discriminator pipeline and other technical details
are available in the original publication [57].
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Figure 4.2: Generator architecture as presented in [57]. Yellow and blue boxes represent the input/output
of the generator, respectively the feature layers of the generator. Up-sampling structures (mainly transposed
convolutions) are shown with orange arrows. Finally, SLE modules are visualized as green rounded boxes
with blue arrows as input layer and yellow arrows towards the recipient feature map. The feature dimensions
are presented in each box as width × height × number of channels. Note that the pipeline is not bounded to
generate images of resolution 1024× 1024; one can drop the last few layers to shrink the network capacity
and generate lower resolutions.

Figure 4.2 shows a generator for 3-channel RGB images. The UV field we are interested in however takes
an additional fourth channel for point displacements. Although the generator can easily be extended to 4-
channel image synthesis, we explicitly avoid doing this as it fails in capturing meaningful displacements -
further explanations provided in Chapter 6. We instead introduce a very simple convolution-based image-
to-image translator f , which we append to the generator. f takes in the current generated RGB UV texture
and projects it towards a single-channel displacement UV map:

G(z) = A = [Argb, Aδ], Argb = Grgb(z), Aδ = f(Argb), (4.6)

where Grgb is the generator per se as shown in Figure 4.2, and the notation for A is borrowed from Chapter
4.1. Since f becomes part of our generative process, it is trained in the same way as Grgb with discriminator
gradients.
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Chapter 5

Experiments and Results

The focus of this chapter is to give valuable insights about the experiments completed during the thesis
duration, alongside their respective results. The chapter is split in four sections: three of them review
different scenarios, while the first section presents the tools and implementation details of our main method.
The purpose of each experiment is to verify one hypothesis, where the previous outcome is oftentimes the
trigger for a new hypothesis. All our conducted evaluations run on a single NVIDIA GeForce RTX 2080 Ti
consumer GPU.

5.1 Implementation details

Dataset. Our final architecture trains on SHHQ [25], a dataset of high-quality full-body human images in a
resolution of 1024×512. Although the authors promise a total of 230’000 images, only 40’0000 images are
made publicly available at the time of writing. The dataset consists of raw images of fully visible mid-body
aligned humans with their respective segmentation masks. We remove the raw images’ background using
the available masks, and reshape them to a square resolution of 1024 × 1024 by infilling the sides of the
images with a white background, while keeping the original image centered. In its current stage, our pipeline
only supports square image ratios for both generator output and discriminator input. Our method requires a
set of SMPL-X meshes, such that when combined with an appearance texture, resembles a true distribution
of full-body real humans. For that, we extract a SMPL-X mesh for each subject in our canonicalized SHHQ
dataset with PIXIE [24], a regression model for expressive bodies from a single image. Since PIXIE outputs
considerably more information than what we need, we run a script to only extract SMPL-X poses, shapes,
expressions and orientations, and store all these parameters for the 40’000 images together into a NumPy
.npz file. A visualization of the first 10 SHHQ subjects with their respective PIXIE output mesh is shown in
Figure 5.1.

Neural Renderer. The overall GAN architecture we build on top of [63] mostly remains unchanged, and
only few parts have been slightly modified to fit our purpose. Our method however leverages an additional
rendering step at the intersection of our two adversarial networks. We previously mentioned employing a
point-based renderer for the appearance representation. Precisely, we actually build on the Pulsar backend
for differentiable sphere-rendering [54] as implemented in PyTorch3D [84]. During training, we sample
105 points from the SMPL-X mesh surface, and set the Pulsar transparency coefficient gamma to 0.001
and each sphere radius to 0.0008. Our method is fully modular, as loading data samples, the SMPL-X
forward, and rendering in PyTorch3D are all batchable. Finally, rendering enables different resolutions for
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Figure 5.1: SHHQ samples (top) and their respective PIXIE mesh output (bottom).

the generator output and the discriminator input, allowing to discriminate on high resolution data while
keeping the generation process low resolution and thus low cost. We nonetheless generate and discriminate
on the same resolution of 256× 256 for better results (see Chapter 5.3).

5.2 Multi-view single scene, RGB only

Learning a distribution of UV textures from real images in a coherent manner comes with challenges, and
a clear understanding of the constraints is a necessity. To develop our comprehension of the subject, we
start with a simplified RGB only multi-view setting for a single scene. In particular, we conduct a set of
experiments on a cow mesh [82] made available by PyTorch3D. We render the mesh with a single point
light from 2’000 uniform random views on a circle around the mesh and allow for arbitrary negative and
positive spherical elevations of up to 30 degrees (i.e., the rendered camera angles are always sampled from
a narrow region on a sphere with fixed radius). These views are rendered at a resolution of 1024× 1024 and
constitute the training data for this section. Four random samples are depicted alongside the target ground
truth UV texture in Figure 5.2.

Figure 5.2: Random samples from the cow mesh dataset and target ground truth UV texture.

In the conducted experiments, we assume knowledge of the camera views distribution and, furthermore,
render directly on the ground truth mesh. We consequently render the ground truth geometry from similar
views as in the training data at a resolution of 256 × 256, for which we hope to accurately reconstruct the
corresponding RGB UV texture with same learned resolution, but with a GAN loss rather than a typical
photometric loss. For each experiment we provide two figures: a plot for the discriminator and generator
training losses, alongside a set of generated UV textures and their respective renders from a random view
for the last model checkpoint. Note that the plots are capped at 8’000 epochs (with the exception of the first
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more demonstrative experiment). All runs will either have reached their maximal wall-clock time by then,
or will have been interrupted due to clear convergence or divergence of the losses. Please pay attention to
the scale of the y-axis, as it fluctuates to get the most out of the available space for each figure.

Each experiment runs for 24 hours, if not interrupted before. We unconventionally disable any data augmen-
tation, as our goal is reconstruction rather than learning a distribution. The batch size is fixed to 8 and we
additionally accumulate gradients for 4 epochs (replicating batching without any further memory require-
ments). Lastly, the generator and discriminator are optimized with Adam and an identical learning rate of
0.0002 for both networks. These parameters stay unchanged for all our scenarios, unless stated otherwise.

Default Architecture. Before blindly diving into the multi-view setting, we first confirm the generator’s
ability to converge onto a single image without any rendering, i.e., with a typical GAN model. We select an
arbitrary image from our constructed dataset, namely we opt for a render of a side facing cow, and utilise
this single image as our training set. We then let the model train for around 30’000 epochs to guarantee
convergence. Despite not perfectly reaching the convergence state of D = 2 and G = 0, the generator is
still capable of flawlessly reconstructing the training image, as seen in Figure 5.3.
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Figure 5.3: GAN training loss for default architecture without rendering (left) and corresponding sampled
generated results at convergence (right).

Default Architecture with Rendering. Now that we validated the generator’s capacity to overfit to a
single scene, we extend it with the previously discussed neural renderer. Our early evaluations operate
with the default PyTorch3D point renderer [100] instead of Pulsar, with 105 sampled points from the mesh
surface. Albeit showing a promising trend early during training, the generator quickly diverges and steadily
gets worse. Unsurprisingly on the other hand, the discriminator is flawlessly capable of distinguishing real
from fake samples. Figure 5.4 shows both sampled results at the last model checkpoint (middle figure)
and at the global generator loss minimum around 1500 epochs (right figure). Even though the synthesized
quality at optimality is considerably better than later during training, it still suffers from blurriness and other
undesired artefacts. Notice that future experiments do not include intermediary results, as they are less
informative about the generation quality. Can we achieve better convergence by guiding our networks with
more precise camera poses similarly to regular reconstruction methods?
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Figure 5.4: GAN training loss for default architecture with rendering (left), corresponding sampled gener-
ated results at generator optimality (middle) and at training abortion (right).

Camera Conditioning. We borrow ideas from traditional photogrammetry by taking advantage of camera
poses for each training sample. Instead of optimizing a pixel-wise loss for specific target views, we condition
both our networks on camera azimuths and elevations. We condition in a similar fashion to StyleGAN [48],
via a simple fully connected mapping from the labels towards the generator latent space and towards the
discriminator image space. From Figure 5.5, we can conclude that additional camera labelling only hurts
the generator. One possible explanation is that we learn a view-indepedent UV texture; thus providing view-
dependent information only further confuses G. Moreover, as each camera angle has the same likelihood of
occuring, the discriminator should also be view-independent. A possible remedy could be to constrain the
generator to a single unique latent vector instead of learning a full distribution.
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Figure 5.5: GAN training loss for camera conditioning method (left) and corresponding sampled generated
results at training abortion (right).

Single Latent Code. In order to enforce a unique learned UV texture and potentially help our generator,
we suggest a single optimized latent code. Instead of sampling from a normal distribution, we fix the latent
to a constant vector which we then optimize alongside the generator. Figure 5.6 however clearly invalidates
our hypothesis with a slowly worsening generator. Indeed for a fixed generator, slight changes in the latent
can have drastic effects in the image space. By optimizing both G and the latent code, the generator weights
might be constantly chasing after the optimal latent and vice-versa, inevitably resulting in the discriminator
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taking the lead. We discard this idea, as we anyways already demonstrated the default GAN’s ability to
overfit to a single target. Note that the two shown textures are identical down to the pixel, as only a single
latent is available at each time. By investigating the conducted evaluations so far, we realize that the common
denominator is a discriminator converging too quickly. The next experiments all focus on penalizing D with
various popular regularization techniques to give the generator a chance of catching up.
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Figure 5.6: GAN training loss for a single optimized latent code (left) and corresponding sampled generated
results at training abortion (right).
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Figure 5.7: GAN training loss with TTUR coefficient set to 0.5 (left) and corresponding sampled generated
results at training abortion (right).

Two Time-Scale Update Rule. The learning rate is an essential hyperparameter that regulates the opti-
mization step size in learning-based algorithms. By default our GAN uses the same learning rate for both G
and D, but a two time-scale update rule (TTUR) [39] allows to manipulate each learning rate independently.
The TTUR coefficient proportionally scales the discriminator learning rate up or down, and consequently
slows down or speeds up the learning for D. We evaluate three different scenarios by setting the TTUR
coefficient to 0.5, 0.1 and 2.0 (see Figures 5.7, 5.8 and 5.9 respectively). We expect better results for the two
first examples, and worse performance for the larger coefficient. In addition to TTUR, we also introduce
label smoothing by occasionally randomizing the discriminators output with 20% probability, and accumu-
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late gradients for a longer period of 16 epochs (previously 4), as larger batch sizes correlate positively with
GAN convergence. These techniques will be applied in future experiments as well. As expected, slowing
down the discriminator allows for the generator to produce better results, despite producing striped artefacts
(see face region in Figure 5.8) and still not converging towards the desired state. Our observations lead us to
think that a low TTUR coefficient of 0.1 is adequate and yields the best quantitative and qualitative results
so far.
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Figure 5.8: GAN training loss with TTUR coefficient set to 0.1 (left) and corresponding sampled generated
results at training abortion (right).
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Figure 5.9: GAN training loss with TTUR coefficient set to 2.0 (left) and corresponding sampled generated
results at training abortion (right).

Gradient Penalty. Although our current implementation already penalizes gradient magnitudes larger
than one, we evaluate the effect of stronger regularization by scaling the gradient penalty weight [35] up to
40 (set to 10 by default). As stated in the last paragraph, we maintain a TTUR coefficient of 0.1, accumulate
gradients every 16 epochs, and only slightly raise the label smoothing probability to 40%. Results are
depicted in Figure 5.10, but seem to be invariant to the gradient penalty scaling. We believe that the default
gradient penalty coefficient is already enough to restrain the gradients’ magnitude.
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Figure 5.10: GAN training loss with scaled gradient penalty (left) and corresponding sampled generated
results at training abortion (right).
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Figure 5.11: GAN training loss with discriminator dropout (left) and corresponding sampled generated
results at training abortion (right).

Discriminator Dropout. Having experimented with many unsuccessful settings, we take a step back and
wonder whether the point rasterizer itself might not be the problem. From close inspection of the renders,
one can notice that the edges of our geometry are not smooth nor continuous. Switching back to mesh
rendering might resolve this issue, as the described artefacts might be a side effect of the rasterization
algorithm. We decide to simplify our setting even more by dropping the point sampling step and directly
rendering the default mesh with a single point light at the same location as in the training renders. To further
penalize the discriminator, dropout layers with probability 0.2 are added in the discriminator between each
convolution and LeakyReLU activation function. Label smoothing is maintained at probability 0.4 and the
TTUR coefficient at 0.1. Here the results in Figure 5.11 are interesting, since G produces the best qualitative
results so far (see the sharpness around the face region in the UV space) but still does not converge as desired.
The change in brightness and saturation of the UV textures is not a direct product of mesh rendering, but
instead of the added point light. In fact, illumination effects were previously baked into the textures. The
results are nevertheless still considerably better than with the point rasterizer. On a side note, keep in mind
that mesh rendering is not suited for our method, as it does not support displacements in the same precision
as a point-based approach. We later circumvent this by substituting the default point renderer for the faster
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and more accurate Pulsar backend. With all this in mind, can we finally achieve convergence with precise
UV reconstruction?

Discriminator Scheduling. For our last experiment we hinder our discriminator one more time with a
scheduling on its learning, by updating the network only every 10 epochs rather than at each iteration.
Everything else stays unchanged from the previous paragraph (dropout, label smoothing and TTUR). Our
model is finally capable of converging in the multi-view and single-scene scenario but not exactly towards
the expected convergence state. Compared to the previous experiment, the generated images unexpectedly
seem to be more noisy and have worse overall reconstruction fidelity. We therefore discard the scheduling
approach in future single-view experiments. Results are depicted in Figure 5.12.
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Figure 5.12: GAN training loss with discriminator scheduling (left) and corresponding sampled generated
results at training abortion (right).

Table 5.1: Quantitative evaluation of regularization techniques in the context of multi-view single scene
RGB only generation. The metric of evaluation is the FID score.

REGULARIZATION FID ↓

1 Default 189.36
2 1 + Label smoothing 177.47
3 2 + TTUR coefficient 0.1 228.87
4 3 + Dropout 200.17

Ablation and Overview. The above scenarios have been evaluated over a long period of time with several
iterations and modifications; it can be difficult to pinpoint which approaches were actually beneficial or
detrimental. Hence this last paragraph aims at summarizing the important results in a short and structured
ablation study. We exclusively focus on the effects of regularization, particularly label smoothing, TTUR
and dropout, as they seem to correlate the most with convergence improvements. For a fair comparison, we
employ the Pulsar backend instead of default point or mesh rendering. Pulsar has a larger memory footprint
which is why we decrease the batch size to 2, while still accumulating gradients for 16 epochs. We set the
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Pulsar transparency coefficient gamma to fully opaque (0.00001), the sphere radius to 0.01, and sample 105

points from the mesh surface. We start with the default architecture and one-by-one add each regularization
trick to the previous experiment. The study runs for 10’000 epochs to ensure potential convergence. FID
scores after 10’000 epochs, GAN training plots and qualitative results are available in Table 5.1, Figure 5.13
and 5.14.
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Figure 5.13: Discriminator (left) and generator training losses (right) for ablation study on the cow mesh.
Numeration as is Table 5.1.

Figure 5.14: Sampled UV generated results (top) and corresponding renders (bottom) at 10’0000 epochs for
each ablation study experiment. Left (1) to right (4) following the numeration from Table 5.1.

Against our expectations, convergence does not necessarily correlate with better quality. In fact, restraining
the discriminator evens out the chances for the generator to catch up, but likely at the cost of less meaningful
gradients. The label smoothing FID score validates this hypothesis, as it does not penalize the discriminator
at all but rather randomizes the loss instead. We can additionally confirm that the qualitative improvements
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of our previous dropout experiments were a consequence of mesh rendering rather than the dropout itself.
Justifying why some techniques have a larger impact on the overall quality remains however an open ques-
tion. Chapter 6 will later discuss why our generative pipeline fails to perfectly reconstruct single scenes.

5.3 Single-view scenes

So far, we have explored UV generation given the target geometry and multiple views from the same scene.
We now assess our method on one-shot full-body human photographs, first for a single-view, then a large
set of independent single-views from the SHHQ dataset [25]. We extend our pipeline to be fully batchable
by performing a SMPL-X forward on one-time loaded parameters, instead of loading meshes as .obj files
individually. For all experiments, we use Pulsar with the same hyperparameters as discussed in the Neural
Renderer paragraph in Chapter 5.1 and a batch size of 2, while accumulating gradients for 16 epochs. For
evaluations on scene reconstruction, we again disable data augmentation. All other experiments on the full
SHHQ dataset augment each sample with 25% probability.

Single-view Reconstruction. This section examines preliminary evaluations for the final framework on
multiple single-view photographs. The goal is to fit the appearance of the person in the left of Figure 5.15,
given the PIXIE [24] output mesh on the right side. We purposefully select a subject with little aberration
from the corresponding minimally clothed body to facilitate our investigation. Furthermore, we now enable
discriminating at a different resolution than generation, since rendering of the synthesized UV textures can
be done at any scale.

Figure 5.15: Sample from the SHHQ (left) and corresponding PIXIE prediction as a SMPL-X mesh (right).

Six different scenarios are evaluated. We start by comparing the effects of different learning rates while
applying the label smoothing trick with probability 0.2 at a resolution of 256 × 256 (Figure 5.16). In a
second stage, we repeat the same evaluations, but render at a resolution of 1024 × 1024 (Figure 5.17).
The generated UV textures remain low resolution, but the discriminator now manipulates high resolution
images. These four settings exclusively operate on color appearance. The last two experiments introduce a
new channel for displacements in two distinguish ways. First we naively extend the generator to synthesize
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4-channel images. Later we map the learned RGB UV textures through a simple image-to-image translator
f as discussed in Chapter 4.2.
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Figure 5.16: GAN training losses for TTUR comparison (left) and corresponding sampled generated results
at training abortion (right), resolution 256× 256. TTUR coefficient 0.1 (top) against default 1.0 (bottom).
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Figure 5.17: GAN training loss with TTUR comparison (left) and corresponding sampled generated results
at training abortion (right), resolution 1024×1024. TTUR coefficient 0.1 (top) against default 1.0 (bottom).

For both high and low resolutions, the effects of a smaller learning rate on the discriminator are evident.
The experiments with TTUR coefficient 1.0 at a resolution of 1024× 1024 were interrupted early, as diver-
gence was undeniable. One might think that discriminating at higher resolutions should help the generator
to synthesize improved quality data. While in essence this is a valid assumption, we believe it fails in
practice since two neighboring pixels in high resolution renders have a strong likelihood of colliding into a
single pixel on lower resolution renders. Indeed on larger resolution renders, the discriminator is capable
of perceiving a larger pixel surface area of the underlying UV texture. D might therefore only propagate
meaningful gradients to the visible regions, discarding and deteriorating large portions of the generated UV
map.

We finally investigate the results with enabled displacements, both via naive extension to 4-channels and
with an image-to-image translator. We set the TTUR coefficient to 0.1 and render at a resolution of 256×256.
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Training plots and qualitative results are shown in Figure 5.18, where only the first three RGB channels are
visualized. We interrupt the run for naive displacement learning early, as it undoubtedly fails in capturing
geometry accurately. This behavior is a consequence of convolution-based learning, when entangling all
output channels with a shared receptive field. Our image-to-image function does only a slightly better job
with more regulated displacements, but eventually breaks down and progressively diverges.
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Figure 5.18: GAN training loss with displacements (left) and corresponding sampled generated results at
training abortion (right), resolution 256×256. Naive displacements implementation (top) against image-to-
image translator (bottom).

3D Aware Synthesis. To capture a realistic distribution of human appearance, we need a strong model
for both surface color and geometry. In its current form, our framework only supports color; further inves-
tigation on displacement optimization is required. This last paragraph nonetheless evaluates our pipeline
(RGB channels only) on the full available SHHQ dataset. When training the generator, we sample SMPL-X
meshes from the PIXIE regressions as underlying geometry for the UV textures. We only provide a qualita-
tive analysis, as our generator is far from converging. After 14’000 epochs, we achieve the results depicted
in 5.19. Our model is still far away from convincing synthesis, but we can already observe a few desirable
qualities. Our generator is capable of learning body attributes in their correct location, and therefore con-
forms to the SMPL-X UV layout. Despite a few samples with a similar style (for instance the green stain on
the shirt), we also achieve adequate diversity in clothing and skin color. Some harmful artefacts can on the
other hand also be noticed, such as the generator compensating for the lack of geometry by inpainting some
parts of the texture with a white background. Due to time constraints, these results are only preliminary and
incomplete. An exhaustive analysis of the generator’s ability to synthesize novel data and an inspection of
the latent space are necessary.
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Figure 5.19: Sampled UV generated results (top) and corresponding renders (bottom) trained for 14’0000
epochs on SHHQ with 3DiGAN.

31



CHAPTER 5. EXPERIMENTS AND RESULTS

32



Chapter 6

Discussion

This short chapter analyses the limitations of our pipeline and failure cases encountered in the previous
sections. We also briefly discuss implications and challenges of our method.

Downsides of a GAN-based Approach. GANs are notoriously bad at training in a stable fashion. They
require a lot of hyperparameter tuning and regularization at different levels. Our method introduces an addi-
tional UV mapping step, in which we project the learned images onto a mesh. This mapping is well-defined,
but marks a clear separation between generator output and observed true data, as G won’t explicitly imitate
what the discriminator sees. This weakens the propagated gradients from D to G, and makes it hard for the
generator to learn correctly.

On another note, our framework builds on top of classical convolution-based GANs. By construction, con-
volutions locally rely on neighboring information. Spatial consistency in a generative forward pass is thus
primordial for data synthesis. Notice that the observed checkerboard-like patterns in the UV textures of our
experiments are a typical signature of transpose convolutions. Although there is a direct correspondence
between the 3D space and the texture space, this correspondence does not apply so nicely to the UV pro-
jection step. UVs tend to break seams, introduce cuts, stretch and disproportionally reshape the laid out
geometry. While learning RGB values is a simple pixel to texel (texture pixel) projection, a major drawback
appears for displacements. In order to correctly optimize for changes in geometry, we precisely need to
capture distances in the image space, and map those distances as values to the texture space. In summary,
measuring distances in the image space with locally dependent convolutions is the main reason why our
pipeline fails for displacements. Competing frameworks building on 3D generators [17, 107] fully capture
spatial information into separate channels, and therefore do not need to learn any distances in the image
space. Replacing our GAN-based approach for more robust methods less susceptible to errors during the
UV projection step, could potentially lead to better overall results in the synthesized appearances.

Reconstruction Quality and Convergence. The main focus of our experiments lied in approximating
single scenes via UV texture fitting. While the learned appearances might be convincing to a certain degree,
we did not achieve high fidelity reconstruction capable of fooling the discriminator. Capturing a single scene
with GANs is a counterintuitive task because of the non-deterministic nature of the latent space. Indeed,
the generator starts from a Gaussian distribution, but we force it to project any sampled input to the same
output. Formally, we try to transform the input distribution to a single spike distribution with zero standard
deviation. This fragile procedure makes convergence complicated, as any slight deviation in the generator’s
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weights will have a large effect on the synthesized UV image domain.

Framework Limitations Unlike modern reconstruction methods [68], our framework bakes environment
lighting effects into the appearance textures. A solution to mitigate this would be to condition our generator
on predicted light intensity and position. This however makes real-time applications impractical, since then
a single texture cannot be stored in memory. There might also be entanglement between directions in the
latent space, and controlling a single attribute might slightly change the appearance’s identity. Note that not
only illumination, but in fact any possible attributes are baked into the textures (pose, shape, expression or
other environmental factors), but we assume these to be negligible in our texture space.

Ethical Implications. Although our method does not produce photorealistic results yet and still lacks
technical innovations, it could in the future be exploited for defamatory content creation. We do not condone
the misuse of generative techniques for the synthesis of convincing and deceptive imagery, especially in the
context of social misinformation. We also recognize that SHHQ has a potential bias and lack of diversity,
which is reflected in the learned distribution of appearances.
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Conclusion

Synthesizing novel photorealistic human avatars will enable populating digital thriving worlds. With this
work, we have taken several steps towards this goal. We first proposed 3DiGAN, a lightweight generative
model for full-body human appearance synthesis from single-view 2D photographs only. While our frame-
work still has a few limitations, our simple approach differs from modern more complex 3D volumetric-
based generators and has a high potential to produce competitive results. We additionally examined various
relevant parallel works, and provided a detailed outline of the fundamental building blocks of our method.
This review constitutes an informative starting point for many research directions in human modelling,
neural rendering and image generation. Later, we investigated our contributions via several conducted ex-
periments, evaluations and discussions in the context of single-scene reconstruction. These pointed out the
limitations of our pipeline, but also clarified which steps can be taken to improve its current performance.
Our method serves as a strong basis for future work in photorealistic image synthesis of both full-body
human avatars and other geometries.
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Appendix A

The First Appendix

We will provide the code for 3DiGAN, related experiments and the PIXIE outputs on SHHQ. The code will
also later be made publicly available under : https://github.com/maximeraafat/3DiGAN.
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