A BRIEF STORY OF GENERATIVE MODELLING FOR DIGITAL HUMANS

By MAXIME RAAFAT with SERGEY PROKUDIN's supervision

19.10.2022

OUTLINE

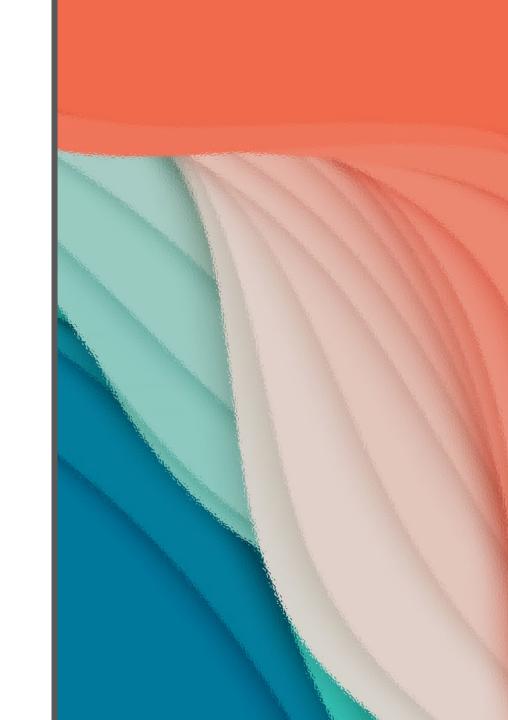
A Short History of Computer Vision

Representation of Digital Human Avatars

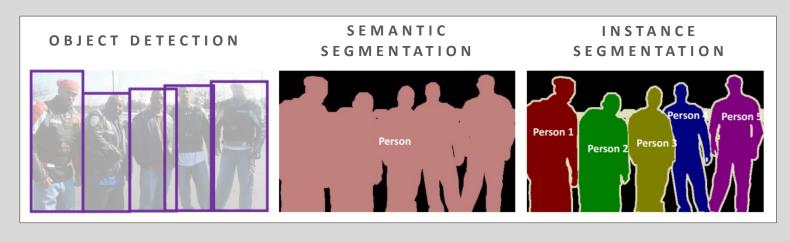
Synthesis of Digital Human Avatars

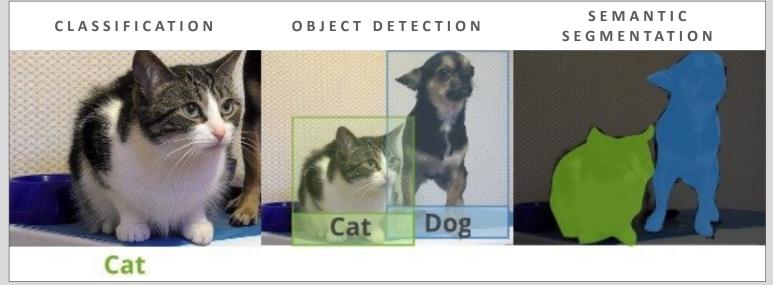
INTRODUCTION

A SHORT HISTORY OF COMPUTER VISION

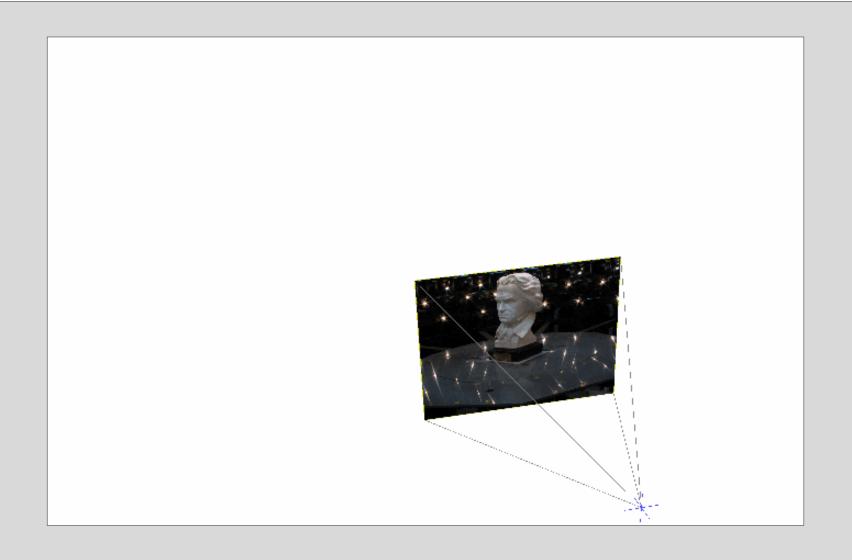


UNDERSTANDING THE WORLD





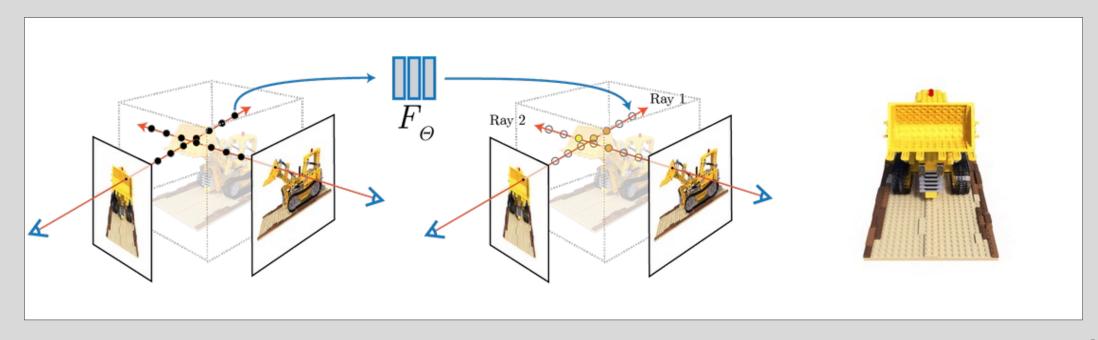
CAPTURING THE WORLD



CAPTURING THE WORLD

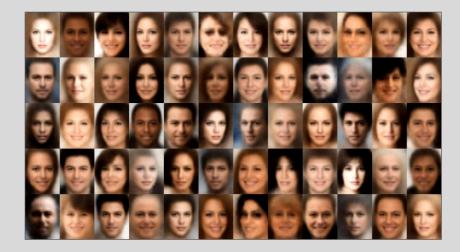
Nowadays, everything is deep

Neural Radiance Fields¹

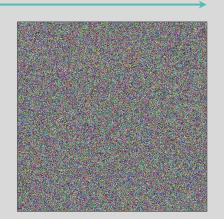


CREATING NEW WORLDS

VAEs²



GANs (StyleGAN³)



CREATING NEW WORLDS

Naïve (explicit) CNN-based extensions to 3D

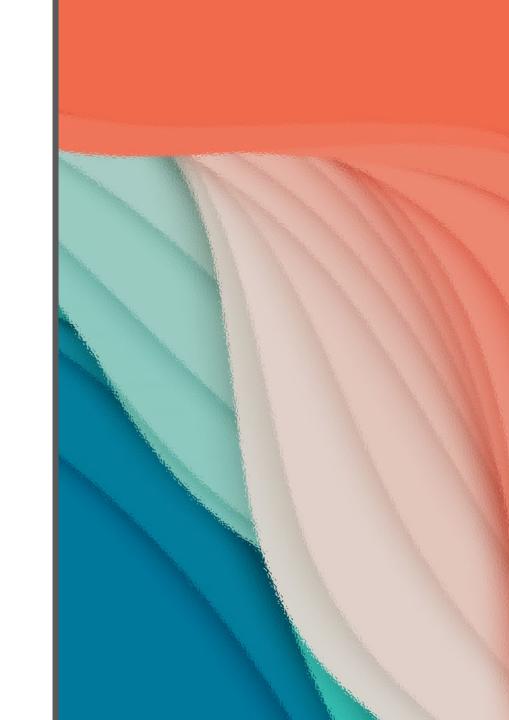
Modern implicit or hybrid efficient 3D generators

Platonic GAN⁵

EG3D⁶

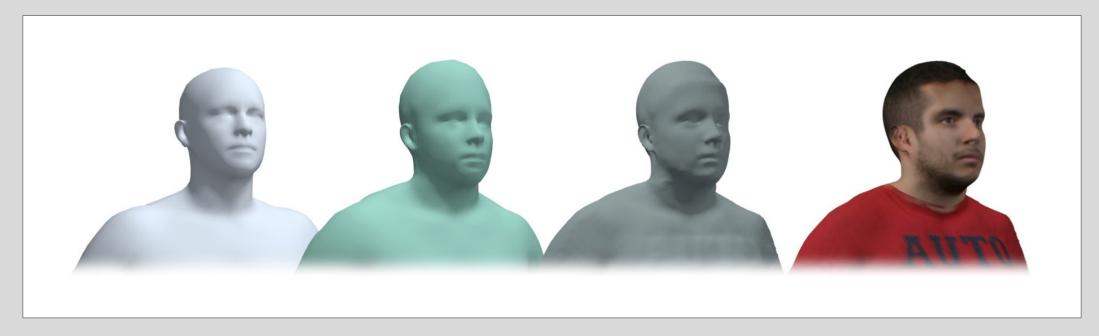
CHAPTER I

REPRESENTATION OF DIGITAL HUMAN AVATARS



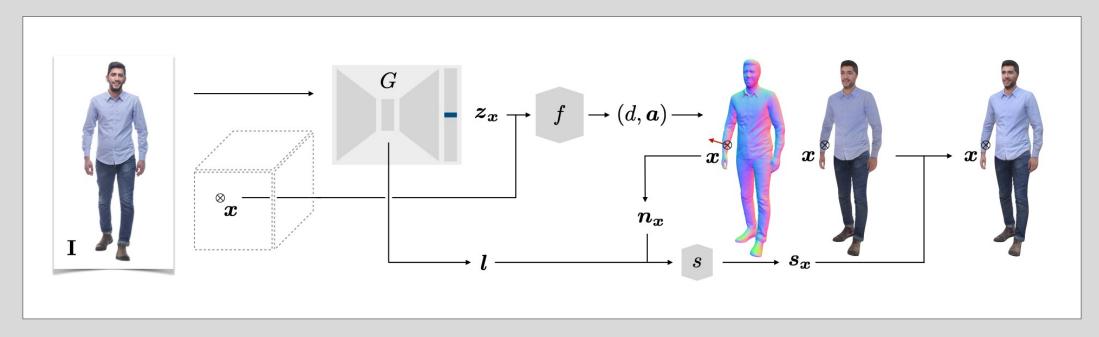
Mesh-based optimization method

Detailed human avatars from monocular video 7 : vertices $V=V_{SMPL}+\Delta V$



Mesh-based regression method

PHORHUM⁸: surface point x shading $s_x = s(a, n_x, l)$



Implicit volumetric-based method

HumanNeRF9: canonical volume + skeletal and non-rigid motions

OUR APPROACH

Expressive point-based appearance

UV field
$$A = [A_{rgb}, A_{\delta}] \in \mathbb{R}^{w_a \times h_a \times 4}$$

Point cloud $X = \{x = (x_{xyz}, x_{rgb}) \in \mathbb{R}^6\}$ formed by $x_{xyz}^m \sim \text{SMPL-X}^{10,11}$ surface

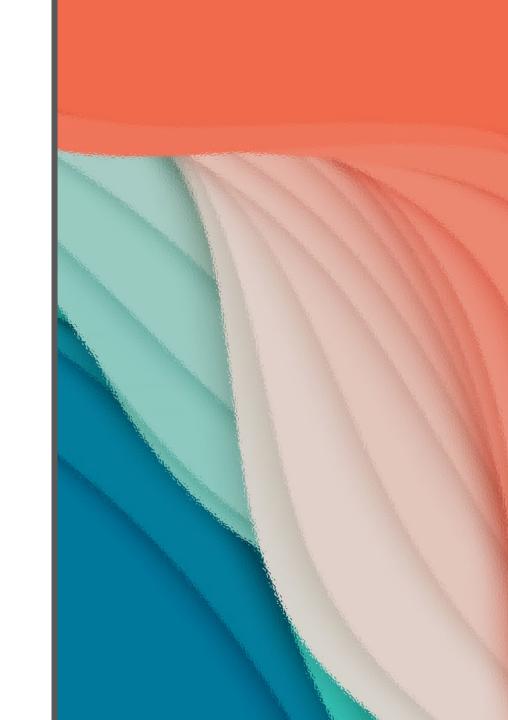
$$x_{xyz} = x_{xyz}^m + \delta \cdot n_{xyz}$$

$$\delta = A_{\delta}[u, v]$$

$$x_{rgb} = A_{rgb}[u, v]$$

CHAPTER II

SYNTHESIS OF DIGITAL HUMAN AVATARS

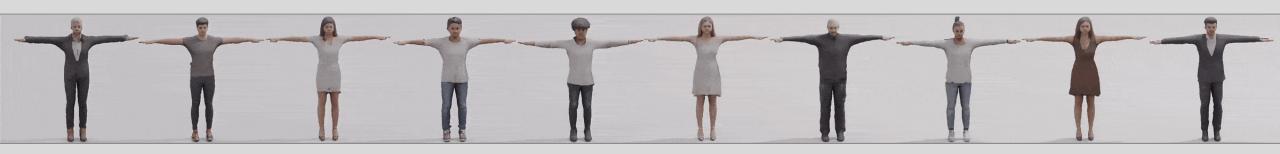


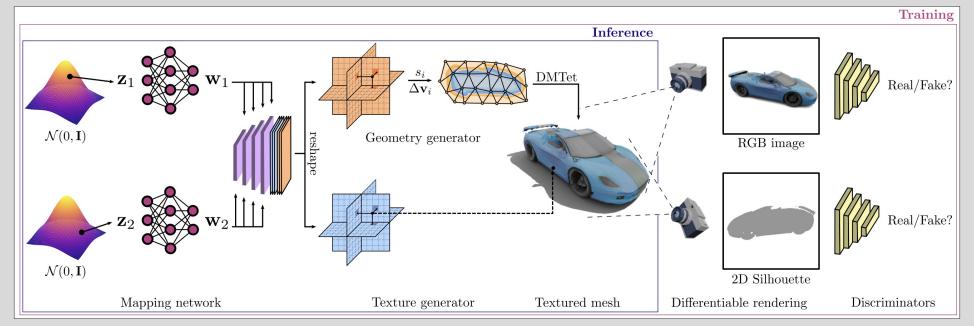
StylePeople 12

SMPL-X with learned deep features texture + deferred neural renderer

Avatar Gen 13

EG3D's tri-plane representation with canonical generation and mapping

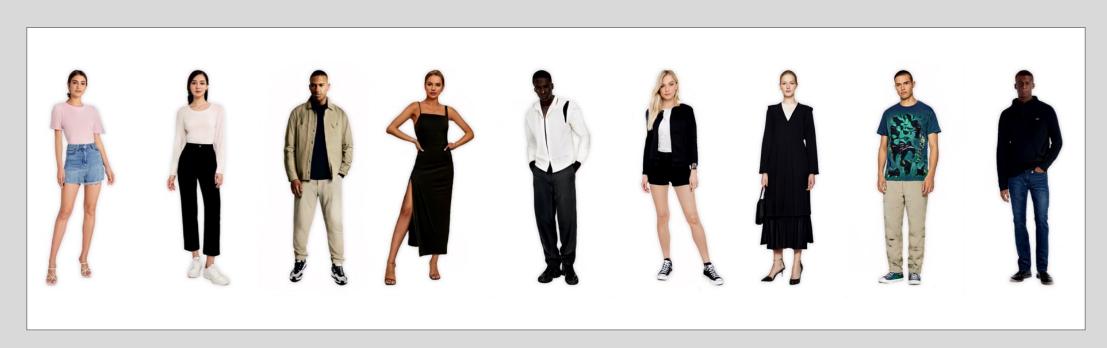




GET3D¹⁴

StyleGAN-Human 15

Vanilla StyleGAN trained on SHHQ dataset



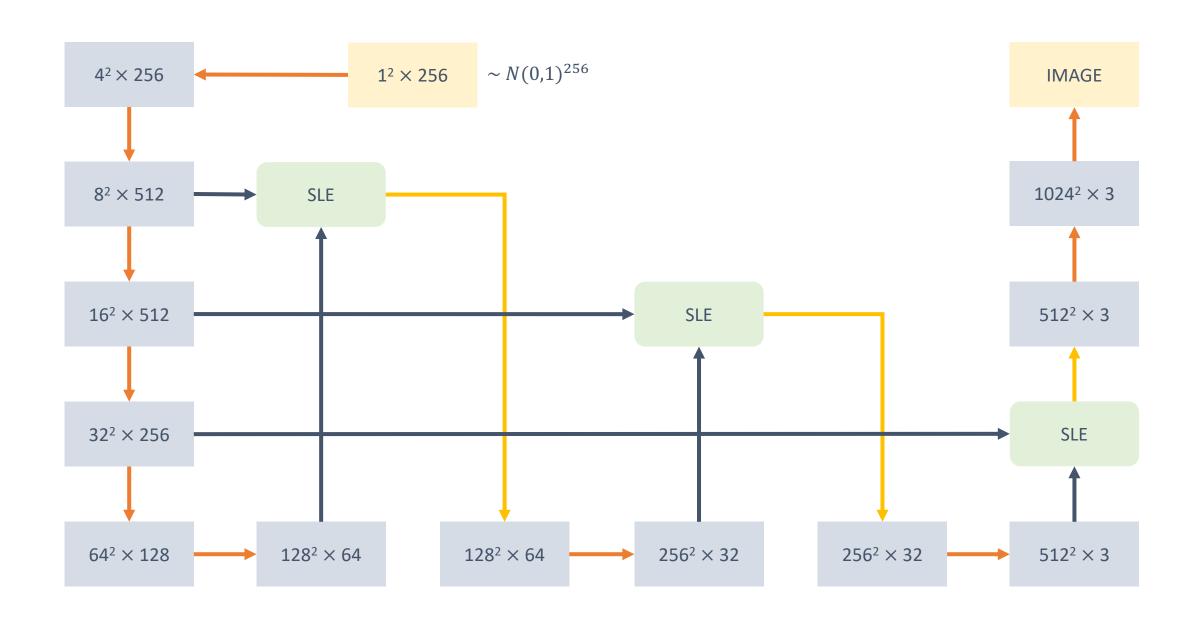
OUR METHOD

3DiGAN pipeline

Lightweight 3D aware implicit GAN, operating in an implicit UV state

Feed rendered generated textures to the discriminator, rather than the generated raw outputs

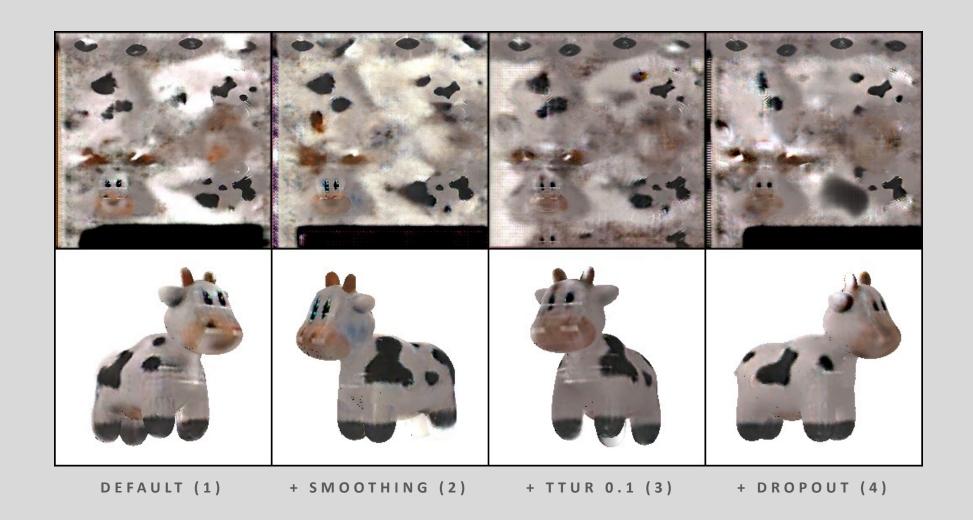




EVALUATIONS

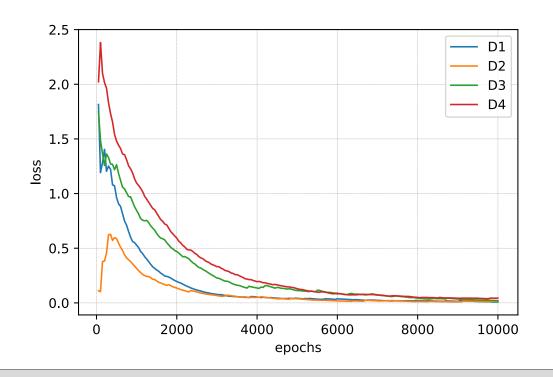
Multi-view single scene, RGB only with true provided geometry $Pulsar^{18} \ sphere \ rendering \ at \ 256 \times 256, \ radius \ 0.01 \ and \ 10^5 \ points$

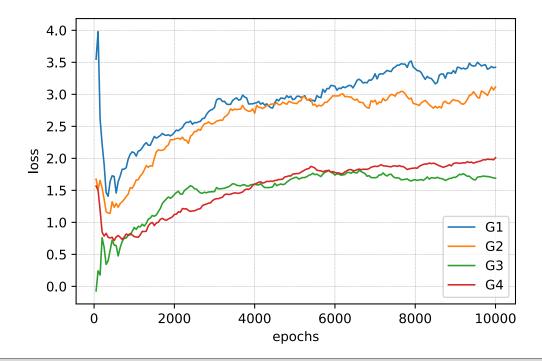
EVALUATIONS

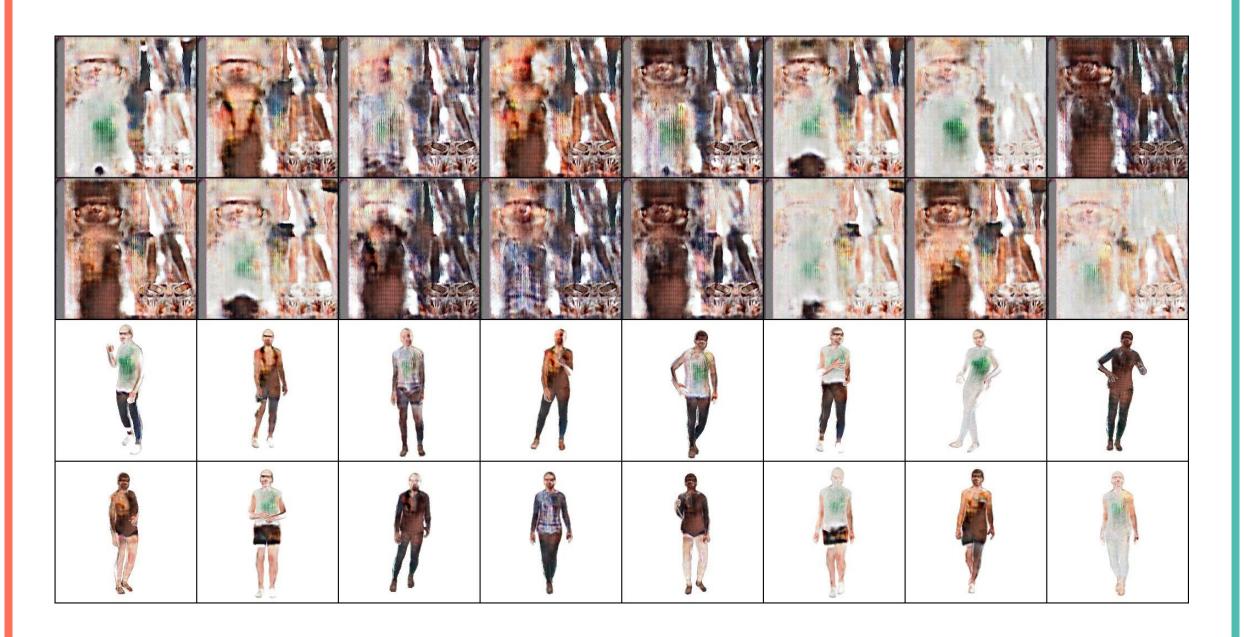


24

EVALUATIONS







LIMITATIONS

Displacement learning currently fails

Joint learning of RGB and geometry is difficult for CNNs

GANs are unstable during training

The UV projection step weakens gradients from D to G

For reconstruction, map Gaussian to single spike distribution with $\sigma=0$

Pose and illumination dependencies are baked into the UVs

Potential solution? Diffusion Models

REFERENCES

- 1. Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." Communications of the ACM 65.1 (2021): 99-106.
- 2. Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).
- 3. Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
- 4. Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 6840-6851.
- 5. Henzler, Philipp, Niloy J. Mitra, and Tobias Ritschel. "Escaping plato's cave: 3d shape from adversarial rendering." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
- 6. Chan, Eric R., et al. "Efficient geometry-aware 3D generative adversarial networks." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- 7. Alldieck, Thiemo, et al. "Detailed human avatars from monocular video." 2018 International Conference on 3D Vision (3DV). IEEE, 2018.
- 8. Alldieck, Thiemo, Mihai Zanfir, and Cristian Sminchisescu. "Photorealistic Monocular 3D Reconstruction of Humans Wearing Clothing." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- 9. Weng, Chung-Yi, et al. "Humannerf: Free-viewpoint rendering of moving people from monocular video." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- 10. Loper, Matthew, et al. "SMPL: A skinned multi-person linear model." ACM transactions on graphics (TOG) 34.6 (2015): 1-16.
- 11. Pavlakos, Georgios, et al. "Expressive body capture: 3d hands, face, and body from a single image." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
- 12. Grigorev, Artur, et al. "Stylepeople: A generative model of fullbody human avatars." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
- 13. Zhang, Jianfeng, et al. "AvatarGen: a 3D Generative Model for Animatable Human Avatars." arXiv preprint arXiv:2208.00561(2022).
- 14. Gao, Jun, et al. "GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images." arXiv preprint arXiv:2209.11163 (2022).
- 15. Fu, Jianglin, et al. "StyleGAN-Human: A Data-Centric Odyssey of Human Generation." arXiv preprint arXiv:2204.11823(2022).
- 16. Liu, Bingchen, et al. "Towards faster and stabilized gan training for high-fidelity few-shot image synthesis." International Conference on Learning Representations. 2020.
- 17. Feng, Yao, et al. "Collaborative regression of expressive bodies using moderation." 2021 International Conference on 3D Vision (3DV). IEEE, 2021.

THANK YOU