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ABSTRACT
Human optical flow plays an important role in the analysis of hu-
man action. We present a deep learning based approach to predict
the optical flow in multi-human scenes. Our method is based on
PWC-Net, a general optical flow estimation network. We use the
Multi-human optical flow dataset to fine-tune the before-mentioned
model, and introducing an iterative refinement procedure and a
cyclic loss to achieve a significant improvement in the flow compu-
tation.We furthermore introduce a novel architecture which runs in
harmony with PWC-Net and makes additional use of pre-computed
segmentation masks.

1 INTRODUCTION
Predicting an accurate optical flow plays a core part in many com-
puter vision applications such as autonomous driving, video com-
pression and video editing. For the past years classical methods
have strongly dominated the field, while most methods implement
an energy minimization pioneered by Horn and Schunck [3]. How-
ever recent advances in machine learning and deep learning have
led to innovative learning-based approaches[8, 10] that not only
outperform classical methods, but also make flow computation sig-
nificantly faster and enable real-time applications.
Predicting an accurate optical flow is a challenging task to solve :
since flow estimation requires per-pixel localization, a deep learn-
ing model not only needs to learn relevant features from a scene
frame, but also requires to match those features between two input
images. A further challenge is the increasing demand for real-time
performance for applications on mobile device.
While PWC-Net [10] achieves impressive generalizability to predict
optical flow, many applications care specifically for human flow
estimation. Ranjan et al. [9] therefore generated a Multi-human
optical flow (MHOF) dataset, which we use to fine-tune PWC-Net
on human scenes.
In this work we fine-tune a PWC-Net-based architecture on the
MHOF dataset and present an iterative refinement procedure (simi-
lar to IRR-NET [5]) together with a newly introduced cycle-loss to
further increase the flow prediction accuracy. Lastly we explore an
approach combining the intermediate flow-predictions of PWC-Net
with a novel network, Seg-Net, inspired from LiteFlowNet [4] and
which makes additional use of the segmentation masks of the two
input images.

2 RELATEDWORK
In many areas of computer vision, powerful deep learning models
are progressively replacing classical methods. For optical flow es-
timation it started with the pioneering work of Dosovitskiy et al.
[1]. Although they could not achieve state-of-the-art results, they
showed that CNN’s have high potential for flow prediction tasks.

Figure 1: Example of an optical flow prediction (middle) between
Image 1 (left) and and Image 2 (right)

By stacking multiple FlowNet modules on top of each other, Ilg et
al. [6] developed FlowNet2, competing on par with state-of-the-art
methods. Although Flownet2 achieves astonishing results, its size
is large and does not yet outperform classical approaches. Hui et al.
[4] came upwith a network based on FlowNet2 while being 30 times
smaller in model size. By introducing a cascaded flow inference
relying on sub-pixel refinement (which will be the foundation for
our novel architecture Seg-Net), LiteFlowNet not only outperforms
FlowNet2 in size, but is also 1.36 times faster in running speed.
With PWC-Net, Sun et al. [10] presented a new simplistic model
with far less parameters than Flownet2 [6] and significantly out-
performing it. PWC-Net is based on the well-established principles
of pyramidal processing, warping and the use of a cost volume. By
reducing PWC-Net to only one pyramid layer, which is repeatedly
called to iteratively update the final flow through the addition of the
individual residual flows, IRR-Net [5] further reduces the number
of parameters while not losing in prediction accuracy.
Creating datasets for supervised optical flow learning is a challeng-
ing task which is simplified if data is synthesized such that ground
truth is known. While large scale datasets like FlyingChairs focus
on general optical flow prediction, MHOF [9] is first to introduce
a dataset tailored for human motion prediction. Other approaches
for self-supervised learning [7, 11] have also been developed in
order to remove the need for ground truth optical flow generation
procedures, however our work builds on PWC-Net, which requires
ground truth samples.

3 METHOD
3.1 Problem Statement
We solve the following task: given two input images 𝐼1 and 𝐼2,
predict the optical flow w between the two images. As additional
input we get a body segmentation mask for both images and we are
provided with the PWC-Net model pre-trained on the FlyingChairs
dataset. The images contain multi-human scenes with arbitrary
backgrounds. We measure the model accuracy with the average
End Point Error (EPE) over all image pixels.
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Figure 2: Visualization of our whole architecture. We propagate the by PWC-Net predicted optical flow at different levels to Seg-Net. Seg-Net
first builds an hierarchical feature pyramid with ResNet18 [2] from the segmentation masks. Together with the from PWC-Net propagated
flow we then predict the flow for the respective layer. After going through all levels of the pyramid we compute the final flow.

3.2 Network Architecture
Figure 2 gives an overview of the network architecture. Our method
is based on three core ideas: Iterative Residual Refinement (IRR),
cyclic consistency and the use of the segmentation masks. We
explain each concept in the next three subsections.

3.3 Iterative Residual Refinement
Figure 3 depicts this whole iterative residual refinement (IRR) pro-
cess. Given reference image 𝐼1 and target image 𝐼2 we predict the
optical flow 𝑤𝑏𝑎𝑠𝑒 between 𝐼1 and 𝐼2. We then apply the optical
flow to 𝐼1 and get image 𝐼 ′2 which should be close to 𝐼2. The idea
is to now again predict the flow but this time between 𝐼 ′2 and 𝐼2,
hence we estimate the residual flow, which we call 𝑤1

𝑟𝑒𝑠 . We can
repeat this process to iteratively refine the estimated flow. The final
flow is then the sum of the base flow prediction and all the residual
flow refinements:

𝑤 𝑓 𝑖𝑛𝑎𝑙 = 𝑤𝑏𝑎𝑠𝑒 +
𝑛∑
𝑖=1

𝑤𝑖
𝑟𝑒𝑠

There exists a trade-off between accuracy and runtime. More iter-
ations tend to result in better flow estimation, but increases the
runtime in a linear fashion. To this end we use n = 3.

Figure 3: Iterative Residual Refinement. We iteratively refine the
final flow by adding the residual flow from the previous flow esti-
mation.

3.4 Loss function
The authors of PWC-Net suggest to use a multi-scale training loss.
Let𝑤𝑙

𝐼1,𝐼2
denote the predicted flow field between 𝐼1 and 𝐼2 at the

𝑙-th pyramid level, and𝑤𝑙
𝐺𝑇

be the ground truth flow between 𝐼1
and 𝐼2 at that level.

L𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝑤𝐼1,𝐼2 ,𝑤𝐺𝑇 ) =
𝐿∑

𝑙=𝑙0

𝛼𝑙

∑
𝑥

( |𝑤𝑙
𝐼1,𝐼2

(𝑥) −𝑤𝑙
𝐺𝑇 (𝑥) | + 𝜖)𝑞

Inspired by [CycleGAN] we perform a cyclic flow estimation. After
we have predicted the flow𝑤𝐼1,𝐼2 from 𝐼1 to 𝐼2 we apply𝑤𝐼1,𝐼2 to 𝐼1
to get 𝐼 ′2, which should be close to 𝐼2. We then use our network to
predict the multi-scale flow 𝑤𝑙

𝐼 ′2,𝐼1
from 𝐼 ′2 to 𝐼1. This flow can be

seen as the inverse flow and ideally 𝑤𝑙
𝐼 ′2,𝐼1

= −𝑤𝑙
𝐺𝑇

, and we yield
the below cyclic loss, also depicted in Figure 4.

L𝑐𝑦𝑐𝑙𝑒 (𝑤𝐼 ′2,𝐼1
,𝑤𝐺𝑇 ) =

𝐿∑
𝑙=𝑙0

𝛼𝑙

∑
𝑥

( |𝑤𝑙
𝐼 ′2,𝐼1

(𝑥) +𝑤𝑙
𝐺𝑇 (𝑥) | + 𝜖)𝑞

Lastly we regularize the weights with an L2-norm where Θ denotes
the network parameters.

L𝑟𝑒𝑔 (Θ) = ∥Θ∥2
We conclude on the final loss-function :

L(𝐼1, 𝐼2,𝑤𝐼1,𝐼2 ,𝑤𝐼 ′2,𝐼1
,𝑤𝐺𝑇 ,Θ) = L𝑓 𝑙𝑜𝑤 (𝑤𝐼1,𝐼2 ,𝑤𝐺𝑇 )

+ L𝑐𝑦𝑐𝑙𝑒 (𝑤𝐼 ′2,𝐼1
,−𝑤𝐺𝑇 )

+ L𝑟𝑒𝑔 (Θ)
(1)

Note that we start training by only using the forward flow loss
and only add the cycle-consistency loss after we get an accurate
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forward loss. For both forward-loss and cycle-loss we chose an
𝜖 = 0.01 and 𝑞 = 0.4.

Figure 4: Visualization of the cyclic consistency. After we have
predicted the forward flowwe take the predicted image and estimate
the inverse flow. Ideally we would be back to our original point

3.5 SegNet architecture
The original PWC-Net is less accurate than traditional approaches
on the clean pass of the MPI Sintel dataset, as many classical meth-
ods use image edges to refinemotion boundaries which are perfectly
aligned in the clean pass. We therefore want to address this short-
coming by utilising the segmentation maps of each image, which
have clear boundaries. Additionally they should help our network
to better differentiate between back- and foreground movement.
PWC-Net takes as an input two images on which it performs con-
volutional operations in order to extract image features. Seg-Net
proceeds in a similar fashion, but does some pre-processing on the
images first. We first multiply each input image with its respective
segmentation mask, which results in the same image as before but
with a black background instead of an arbitrary one. This will then
be fed into ResNet18 which yields useful image features. Those
frozen features (due to frozen ResNet18 weights) are then progres-
sively convolved into different tensors of increasing dimensions,
which serve as an input for the cascaded flow inference (inspired
by LiteFlowNet [4]). Each sub-pixel refinement layer (layer of the
cascading flow inference method) is constructed in the same way
: we warp the augmented features of masked image 2 (extracted
from ResNet18 [2]) with the upscaled flow generated in the previous
layer and compute the correlation between this warping and the
features for masked image 1. We then concatenate the correlation
with the matching flows generated in PWC-Net and convolve this
in order to again obtain a flow. Since our first layer doesn’t have
a previous layer, we feed it with the smallest flow generated in
PWC-Net. Figure 2 depicts the complete model architecture.

3.6 Data Augmentation
A large difficulty was to control over-fitting due to the compara-
bly small training set of 8343 pairs of training and 1647 pairs of
validation images. We therefore applied several data augmentation
transformations. We randomly translate, crop and rotate the images
and additionally add Salt and Pepper noise and random Gaussian
blur to further diversify our data.

4 EVALUATION
Our main results are reported in Table 1. The official PWC-Net
serves as a baseline. By adding some dropout layers and further
data augmentation we then fine-tune the PWC-Net on the MHOF

Method Average EPE

(1) PWC 1.724
(2) PWC-ft (1𝑒−4) 0.948
(3) PWC + IRR (1𝑒−5) 0.789
(4) PWC + IRR + Cycle (1𝑒−5) 0.646
(5) PWC + IRR + Cycle (1𝑒−6) 0.546
(6) PWC∗ + SegNet + IRR (1𝑒−4) 0.558
(7) PWC∗ + SegNet + IRR + Cycle (1𝑒−4) 0.558

Table 1:Comparison of End Point Error (EPE) between the different
network architectures on the Multi-Human Optical Flow (MHOF)
dataset

[9] dataset for 400 Epochs with a learning rate of 1𝑒−4, which gave
us a 45% error reduction with an average EPE of 0.948. By adding
the iterative residual refinement (IRR) we further decrease the er-
ror by 10% and the cyclic loss gave us another 8% improvement.
Interestingly the network performs better with a smaller learning
rate (see run (5) in Table 1). Our final run with Seg-Net makes uses
of (frozen) pre-trained weights from run (5) (see Table 1), which we
call PWC∗. Training Seg-Net with the provided pre-trained PWC-
Net model on the on Flying Chairs dataset yields a quite high loss
which struggles to predict accurate flows (validation EPE converg-
ing towards around 1.5).
Note that run (5) iteratively refined the flow, but only the flow after
one iteration gets propagated to the Seg-Net layers. By propagating
an refined flow, Seg-Net would receive a strongly accurate flow
already, and might produce much preciser flows. This was unfortu-
nately not implemented due to time constraints.
Although achieving satisfying results already, we believe that a
larger data sample would considerably improve generalizability,
since Ranjan et al. [9] obtained bluffing results with 3 times as much
data as provided for this project.

Figure 5: Comparison of the final flow prediction between method
(1),(2) and (7). We see that method (7) has clearer boundaries and
less artifacts

5 CONCLUSION
Wepresented an iterative refinement procedure and a cycle-consistency
loss, which significantly improve the final flow prediction. We fur-
ther introduce a novel network architecture that makes use of the
pre-computed body segmentation masks and runs concurrent to
PWC-Net. Our final submission combines all mentioned ideas and
achieves an End Point Error reduction of 67%. We believe that
with more training data and careful loss manipulation we can even
further improve our flow estimation.
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