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GOAL

Unsupervised generative model for high-quality multi-view consistent imagery
and 3D shapes, given single-view 2D photographs

EG3D : expressive hybrid explicit-implicit network architecture



RELATED WORK
Neural scene representation and rendering

Learning 3D scene representations from 2D multi-view images via neural
rendering : SDFs, Implicit Fields or Neural Network Level Sets

Neural rendering : NeRF, FastNeRF, DONeRF, PlenOctrees or SDFDiff

IGR : Implicit Geometric Regularization for NeRF : Representing Scenes as Neural
Learning Shapes Radiance Fields for View Synthesis




RELATED WORK

Explicit vs implicit 3D representations

METHOD REPRESENTATION PROS CONS
.. : Heavy memory overhead
Explicit Voxel grid Fast to evaluate
(not scalable)
o Fully connected Memory efficient
I f
Implicit layer (MLP) continuous function Slow forward pass

Generative 3D-aware image synthesis
2D photorealistic image synthesis : StyleGAN2

3D GANs : voxel-based extensions of classical 2D CNN-based generators, e.g.,
PlatonicGAN, HoloGAN or BlockGAN



TRI-PLANE HYBRID 3D REPRESENTATION

Align explicit features along three axis-aligned orthogonal feature planes

Each feature plane : N x N x C

Query 3D position, retrieve feature vectors, sum vectors and pass-through
lightweight decoder
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3D GAN FRAMEWORK
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3D GAN FRAMEWORK
CNN generator backbone and rendering

Edit StyleGAN2 to output 96 channel images. Split and reshape into three 32-
channel planes

Decoder = single hidden layer MLP with 64 units + softplus activation
Super-resolution

Interactive framerate : volume rendering @ spatial resolution 1282 + up-sampling
Dual discrimination

Concatenate bilinearly up-sampled lggg and |I*ggg into a 6-channel image

Same for real images : concatenate image with blurred copy of itself

Encourages consistency between low resolution render and up-sampled image

Generator and discriminator pose conditioning



EXPERIMENTS AND RESULTS

Datasets : FFHQ and AFHQv2 Cats

Qualitative results
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EXPERIMENTS AND RESULTS
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EXPERIMENTS AND RESULTS

Qualitative effect of super-resolution network
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EXPERIMENTS AND RESULTS

Qualitative effect of dual discrimination
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EXPERIMENTS AND RESULTS

Res. GIRAFFE @-GAN Lift. SG  Ours Ours + TC

2562 181 5 51 27 36
FFHQ Cats 5122 161 1 — 26 35

FID] IDt Depth]l Posel FIDJ

Runtime analysis (FPS on single RTX 3090)

GIRAFFE 2562 31.5 0.64 0.94 .089 16.1

m-GAN 1287 29.9 0.67  0.44 021 16.0 _

Lift. SG 2562 298 058 040 023  — FID ] FACS Smile Std. |

Ours 256° 48 076 031 005  3.88 Naive model 55 0.069

Ours 5127 47 077 039  .005 277 + DD 6.5 0.054
e ‘ + DD, GPC (ours) 4.7 0.031

Ablation study
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EXPERIMENTS AND RESULTS

Applications : latent interpolation
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EXPERIMENTS AND RESULTS

Applications :

image inversion and reconstruction
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