A Parallel Architecture for IISPH Fluids

By Felix Thaler, Barbara Solenthaler & Markus Gross

Presented by Maxime Raafat

Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2014)
J. Bender, C. Duriez, F. Jaillet, and G. Zachmann (Editors)

flaticon.com (by Freepik & Smashicons)

SPH : Smoothed Particle Hydrodynamics

m;
Ai = z—AJW(Xl — x]', h)

[ISPH : Implicit Incompressible Smoothed Particle Hydrodynamics

|
|
|
|
|
4 N [N | 4 N[N [N
I | _ .
Compute Particles Compute Forces I Update Velocities & : Updgteen:;ireZagrLtlcle Compute Pressure
Neighborhoods (except for pressure) | Particle Positions ! Forces
I : Pressures
\. VAN /i \\ VAR VAN J
|
--------------------------------- JI' —_—————— -“-—k /

[IISPH : Implicit Incompressible Smoothed Particle Hydrodynamics

METHOD
Recursive Domain Decomposition

Orthogonal Recursive Bisection (ORB)

e Particles distributed to constant number of nodes

e Simulation is split recursively (each node receives multiple particles)

e Each process manages a box-shaped subdomain with approximately
equal load

METHOD
Recursive Domain Decomposition

METHOD
Communication

Only particles inside the blue, red and yellow regions are stored locally on a
process

Computation split into 2 parts : loop over inner cells & outer cells

Standard MPI is used for communication between neighbor processes

Load balancing control (redistribution of particles to processes — update ORB)

IMPLEMENTATION
Prediction of Advection

foreach particle i, do # not parallel due to external dependencies
L, compute density

density synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute velocity and displacement

velocity and displacement synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute and update density

IMPLEMENTATION

Pressure Solve

while no density convergence, do:
pressure synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute movement caused by neighboring pressure value

movement synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute and update pressure (and density)

10

IMPLEMENTATION
Time Integration

pressure synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute pressure forces

foreach particle i, do
l, integrate

11

RESULTS
Scaling & Performance

128

0.4 million particles ——
112 + P

0.9 million particles ——
% 3.0million paticles ——
229 million particles ——

Speedup
R

computation times [s]

1000

0.4 million particles —e—
0.9 million particles —e—
3.0 million particles —e—
229 million particles ——

3

=
o

[y

0.1

1 16 32 48 &4 80 96 112 1I28

8 cluster nodes, each of them with 4 sockets & 2.5GHz quad core processors

(Total = 128 cores)

12

RESULTS
Load Balancing

13

THANK YOU

