A Parallel Architecture for IISPH Fluids

By Felix Thaler, Barbara Solenthaler & Markus Gross

Presented by Maxime Raafat

SPH: Smoothed Particle Hydrodynamics

$$A_i = \sum_{j} \frac{m_j}{\rho_j} A_j W(x_i - x_j, h)$$

IISPH: Implicit Incompressible Smoothed Particle Hydrodynamics

IISPH: Implicit Incompressible Smoothed Particle Hydrodynamics

METHOD

Recursive Domain Decomposition

Orthogonal Recursive Bisection (ORB)

Particles distributed to constant number of nodes

Simulation is split recursively (each node receives multiple particles)

Each process manages a box-shaped subdomain with approximately equal load

METHOD

Recursive Domain Decomposition

METHOD

Communication

Only particles inside the blue, red and yellow regions are stored locally on a process

Computation split into 2 parts: loop over inner cells & outer cells

Standard MPI is used for communication between neighbor processes

Load balancing control (redistribution of particles to processes — update ORB)

IMPLEMENTATION

Prediction of Advection

```
for each particle i, do
                          # not parallel due to external dependencies
  L, compute density
density synchronization
foreach particle i, do # loop for inner and outer cells (parallel)
  Ly compute velocity and displacement
velocity and displacement synchronization
foreach particle i, do # loop for inner and outer cells (parallel)
  Ly compute and update density
```

IMPLEMENTATION

Pressure Solve

```
while no density convergence, do:
  pressure synchronization
 foreach particle i, do # loop for inner and outer cells (parallel)
   Ly compute movement caused by neighboring pressure value
 movement synchronization
 foreach particle i, do # loop for inner and outer cells (parallel)
   Ly compute and update pressure (and density)
```

IMPLEMENTATION

Time Integration

pressure synchronization

```
foreach particle i, do \# loop for inner and outer cells (parallel) \ compute pressure forces
```

foreach particle *i*, do integrate

RESULTS
Scaling & Performance

8 cluster nodes, each of them with 4 sockets & 2.5GHz quad core processors (Total = 128 cores)

RESULTS Load Balancing

