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SPH : Smoothed Particle Hydrodynamics
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[ ISPH : Implicit Incompressible Smoothed Particle Hydrodynamics
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[IISPH : Implicit Incompressible Smoothed Particle Hydrodynamics




METHOD
Recursive Domain Decomposition

Orthogonal Recursive Bisection (ORB)

e Particles distributed to constant number of nodes

e Simulation is split recursively (each node receives multiple particles)

e Each process manages a box-shaped subdomain with approximately
equal load



METHOD
Recursive Domain Decomposition




METHOD
Communication

Only particles inside the blue, red and yellow regions are stored locally on a
process

Computation split into 2 parts : loop over inner cells & outer cells

Standard MPI is used for communication between neighbor processes

Load balancing control (redistribution of particles to processes — update ORB)



IMPLEMENTATION
Prediction of Advection

foreach particle i, do # not parallel due to external dependencies
L, compute density

density synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute velocity and displacement

velocity and displacement synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute and update density



IMPLEMENTATION

Pressure Solve

while no density convergence, do:
pressure synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute movement caused by neighboring pressure value

movement synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute and update pressure (and density)
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IMPLEMENTATION
Time Integration

pressure synchronization

foreach particle i, do # loop for inner and outer cells (parallel)
L, compute pressure forces

foreach particle i, do
l, integrate
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RESULTS
Scaling & Performance
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8 cluster nodes, each of them with 4 sockets & 2.5GHz quad core processors

(Total = 128 cores)
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RESULTS
Load Balancing
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